Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent decades of warmer climate have brought drying wetlands and falling lake levels to southern Alaska. These recent changes can be placed into a longer-term context of postglacial lake-level fluctuations that include low stands that were as much as 7 m lower than present at eight lakes on the Kenai Lowland. Closed-basin lakes on the Kenai Lowland are typically ringed with old shorelines, usually as wave-cut scarps, cut several meters above modern lake levels; the scarps formed during deglaciation at 25–19 ka in a kettle moraine topography on the western Kenai Lowland. These high-water stands were followed by millennia of low stands, when closed-basin lake levels were drawn down by 5–10 m or more. Peat cores from satellite fens near or adjoining the eight closed-basin lakes show that a regional lake level rise was underway by at least 13.4 ka. At Jigsaw Lake, a detailed study of 23 pairs of overlapping sediment cores, seismic profiling, macrofossil analysis, and 58 AMS radiocarbon dates reveal rapidly rising water levels at 9–8 ka that caused large slabs of peat to slough off and sink to the lake bottom. These slabs preserve an archive of vegetation that had accumulated on a lakeshore apron exposed during the preceding drawdown period. They also preserve evidence of a brief period of lake level rise at 4.7–4.5 ka. We examined plant succession using in situ peat sequences in nine satellite fens around Jigsaw Lake that indicated increased effective moisture between 4.6 and 2.5 ka synchronous with the lake level rise. Mid- to late-Holocene lake high stands in this area are recorded by numerous ice-shoved ramparts (ISRs) along the shores. ISRs at 15 lakes show that individual ramparts typically record several shove events, separated by hundreds or thousands of years. Most ISRs date to within the last 5200 years and it is likely that older ISRs were erased by rising lake levels during the mid- to late Holocene. This study illustrates how data on vegetation changes in hydrologically coupled satellite-fen peat records can be used to constrain the water level histories in larger adjacent lakes. We suggest that this method could be more widely utilized for paleo-lake level reconstruction.more » « less
-
This is the first study to generate and analyze the climate signal in blue intensity (BI) tree-ring chronologies from Alaska yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little). The latewood BI chronology shows a much stronger temperature sensitivity than ring width and can thus provide information on past climate. The well-replicated BI chronology exhibits a positive January–August mean maximum temperature signal for 1900–1975, after which it loses temperature sensitivity following the 1976–1977 shift in northeastern Pacific climate. The positive temperature response appears to recover and remains strong for the most recent decades, but the coming years will continue to test this observation. This temporary loss of temperature sensitivity from about 1976 to 1999 is not evident in ring width or in a change in forest health but is consistent with prior work linking cedar decline to warming. A confounding factor is the uncertain influence of a shift in color variation from the heartwood–sapwood boundary. Future expansion of the yellow-cedar BI network and further investigation of the influence of the heartwood–sapwood transitions in the BI signal will lead to a better understanding of the utility of this species as a climate proxy.more » « less
-
Abstract Winter is a critical season for land‐surface feedbacks and ecosystem processes; however, most high‐latitude paleo‐environmental reconstructions are blind to cold season conditions. Here we introduce a winter‐sensitive, paleo‐proxy record that is based on the relative frequency of tangential rows of traumatic resin ducts (TRDs) in the annual growth rings of mountain hemlocks (Tsuga mertensiana) growing near treeline in Southeast Alaska. Hemlocks produce a row of TRDs in the earlywood portion of their annual rings in response to cambial damage incurred during winter. Multidecadal bouts of TRD production were followed by growth‐leader replacement, reaction wood formation, and divergence in radial growth between storm‐damaged trees and less exposed mountain hemlock forests. These patterns are consistent with TRDs being a response to tree damage caused by ice and snowstorms, a conclusion supported by the krummholz tree architecture at these sites. This relationship is further corroborated by significant correlations between our TRD record and the strength of the wintertime Aleutian Low (AL) pressure system that is linked to tree‐damaging agents like wind, precipitation, and ice storm strength in Southeast Alaska. The combined TRD/krummholz architecture record indicates that abrupt shifts between strong and weak AL phases occurred every several decades since CE 1700 and that the 1800s had relatively long AL phases with heavy snowpacks. In addition to describing the magnitude and tempo of wintertime climate change in Northwestern North America, these results suggest that North Pacific Decadal Variability underlies the long‐term dynamics of treeline ecosystems along the northeast Pacific coast.more » « less
An official website of the United States government

Full Text Available